POWER PLANTS AND INCINERATORS
Making the most of scarce resources, preserving the environment, and using energy in an efficient way are the megatrends of our times.

Fluctuating prices for fossil fuels, uncertainties about the usage of nuclear power, and the threat of climate change have led to a global rethinking of key questions.

- What are the best sources to provide energy, electricity, and heat?
- How can we regain and maintain economic growth without further damage to the environment?
- And finally, how do we ensure our standard of living for an ever growing population?

Well-constructed boilers and modern power plants contribute valuable energy and give their share in an integrated approach to waste management.

Controlled incineration processes under technically optimized circumstances provide one part of the answer.
The construction of modern, highly developed boilers is a technical challenge. For decades, boiler manufacturers have pushed the limits of technology, increased efficiency rates and allowed for a wide range of fuels.

The heart of the boiler, the firechamber, is one of the main components to ensure perfect combustion and optimal performance of the appliance. Boilers are lined with a wide range of high performance refractory lining to ensure smooth operations even in high temperatures and other adverse conditions.

As a response to the world demand of energy, more and more boilers for Power Plants are constructed. Industrialized nations have realized the benefits of local power generation and the use of CO2-neutral, renewable fuels as well as controlled waste incineration.

Refractory products used for power incinerators are developed with a range of adverse conditions to be considered:

- Abrasion resistance
- Thermal shock from sudden and large changes in temperature
- Heat transfer
- Resistance against alkali and other chemicals, mainly from the variety of fuels
- Corrosion

Our services
Aside from the high quality and the proven reliability of our products we can support end users and engineering companies with vast knowledge of the application and technical services.

Our solutions for
- Grates fired or stoker type for municipal waste
- Bubbling fluidized beds (BFB)
- Circulating fluidized beds (CFB)
- Pulverized coal fired boilers
- Biomass gasifiers
- Water cooled grates for biomass
- Rotary kiln incinerators
- Waste gas stacks and flares
- LEAF generators (Low emission alternative fuel)
1. **Abrasion resistance**

In the combustion process, various fuels are transformed into ashes and other residues potentially abrasive for the process equipment and refractory lining.

Fluidized bed boilers also add sand into the furnace to promote combustion. The circulation of sand and ashes in the furnace is an important threat to the life of linings and demands optimal refractories to ensure the long lifespan of the furnace.

The lining must properly resist against abrasion at the operative temperature in order to ensure not only their own life but, in particular also protection of furnace water and steam pressure parts where they are installed.

For a specific rating against international requirements resistance of our materials is measured according to ASTM C704 in volume loss (cm³) after standardized exposure to a stream of SiC abrasive ceramic sand. Materials used in boilers should show losses below 15 cm³, and typically below 10 cm³ for BFB and CFB applications.

For very aggressive abrasion conditions special materials with losses as low as 5 cm³ are available; this can be reached through a balanced combination of aggregate (the coarse grains), matrix (the fine grains) and binding system.

2. **Thermal shock**

Uneven operating conditions of boilers and incinerators have a direct impact on the life span of the linings and the furnace in general.

While refractory suppliers always recommend stable conditions, these may not easily be kept within the boiler process.

Several parameters may affect thermal shock resistance.

- High conductivity helps reduce gradients across linings which are at the origin of thermal stresses.
- Dimensional stability: materials with small temperature induced dimensional changes develop less thermal stresses.
- Strength helps resist stresses and generally helps withstand thermal shock induced stresses.
- Some aggregates can naturally absorb thermally induced cracks and shocks.

3. **Heat transfer**

Linings must comply with the design parameters of boilers and incinerators to ensure that the required heat flow can be extracted from the combustion.

Silicon carbide based materials are normally employed to reach thermal conductivity > 5 W/mK. Values as high as 12 W/mK can be offered in case of need.

These values can be achieved by means of a high level of SiC.

A recent trend is to replace thick and high SiC linings with thinner linings of high strength without SiC.
4. Resistance against alkali

Among the various corrosion drivers linked to the type of fuels alkali have become the most important because of the increasing use of wastes and new type of fuels: waste polymeric materials, biomass, paper, and industrial sludge are the most critical.

Alkali salts are easily vaporized at normal combustion temperature; in the vapor phase they can penetrate linings, attack them by forming new complex compounds which are normally molten and very sticky or precipitate in lower temperature layers/conditions with consequent local volume increase, degradation of strength and finally spalling of refractories.

Our alkali resistant materials are formulated to be only partially or not affected at all by alkali vapors in the combustion:

1. Reduced open porosity to prevent penetration of alkali
2. SiC doped materials develop a partially oxidized glassy layer which reduces porosity
3. ZrO doped materials react in a controlled way with alkali and develop also a protecting glassy phase layer on the hot face
4. Refractories with a chemically balanced matrix can withstand alkali salts penetration without reacting or being attacked
5. Combinations of some of the above technologies

5. Corrosion

Several types of corrosion may affect furnaces in some areas depending on the type of fuel and on the operative conditions of combustion.

Among others, the following factors are mainly responsible for chemical attacks:

- Carbon monoxide
- Fluorine
- Chlorine
- Sulfur
- Chemical processing wastes
SOME KEY APPLICATIONS FOR COOLED PARTS

Membrane walls are widely used in several type of boilers. They do not need thermal insulation; pressurized steam or water run through pipes and extract heat from the combustion chamber and furnace ducts. Pipes often need protection against abrasion, they are therefore lined with one layer dense material resistant to abrasion. In order to ensure the designed heat flow linings must have limited thickness (30 – 70 mm) and the required thermal conductivity.

Linings must also be able to withstand the furnace burning conditions such as thermal shock, CO, chemical attacks, etc.

1. Roof and wall lining on membrane walls

Thin linings on water and steam cooled pipes are typically applied in different zones on walls or roofs of several types of boilers. Anchors are installed in the form of studs on pipes or small Y or V anchors welded on the fin in between.

Thin linings can be installed by casting self flow castables, by patching or by gunning. Gunning can be an option in the case of walls, but it becomes a preferred solution for roofs because of the convenient installation.

Typical applications involve medium to high alumina products, but also SiC materials are widely used in case high thermal conductivity and slag resistance are required.

Seven offers a wide range of products for roof and wall lining on membrane walls:

• Seven Flow 65 NH CO
• Seven Flow 51 NM
• Seven Flow 75 NR
• Seven Flow 92 NB
• Seven Flow 70 ND
• Seven Gun 85 NX
• Seven Trow 85 CX -3
• Seven Flow 60 N SiC H -3
• Seven Patch 85 C SiC

Lining by gunning of a membrane wall roof in an incinerator
2. Fluidized bed combustion chambers

The lower combustion chamber is the area where both air, fuel, sand and limestone are injected into the fluidized bed. The ignition of the boiler is also initiated in this critical zone. Linings are therefore exposed to several types of stresses such as abrasion, thermal shock, reducing atmosphere and chemical attack. Linings in the lower combustion chamber range between 25 and 70 mm, and their construction as well as performance are key to optimal combustion conditions overall.

In the air plenum that feeds the air nozzles there is only limited exposure to high temperature, thermal shock is a main concern and special attention should be placed upon the construction and installation.

<table>
<thead>
<tr>
<th>Color</th>
<th>Zones</th>
<th>Material type</th>
<th>Attention to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower combustion chamber walls</td>
<td>LC or RC castable</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>2</td>
<td>Hearth with nozzles</td>
<td>Self flowing or patching</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>3</td>
<td>Hearth corners</td>
<td>RC or LC castable</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>4</td>
<td>Burner</td>
<td>RC or LC castable</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>5</td>
<td>Slag hopper</td>
<td>LC castable or plastic</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>6</td>
<td>Windbox</td>
<td>Medium weight insulating castable, plastic</td>
<td>abrasion, thermal shock, CO</td>
</tr>
<tr>
<td>7</td>
<td>Backup insul. layer 2</td>
<td>Insulating castable, density 0.7 - 0.8</td>
<td>abrasion, thermal shock, CO</td>
</tr>
</tbody>
</table>

Seven products:

<table>
<thead>
<tr>
<th>Application areas</th>
<th>Seven Flow 51 NM</th>
<th>Seven Flow 65 NH CO</th>
<th>Seven Cast 50/55 NM</th>
<th>Seven Cast 80 NX</th>
<th>Seven Plast 70 CH CO</th>
<th>Seven Cast 70 NH</th>
<th>Seven Cast 80 RX 5</th>
<th>Seven Flow 60 N SiC H -3</th>
<th>Sevenlite 1300 HS P</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower combustion chamber walls</td>
<td>lower combustion chamber walls</td>
<td>hearth with nozzles, hearth corners, fuel chute</td>
<td>fuel chute, hearth corners, hearth with nozzles, slag outlet</td>
<td>burner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>burner, lower combustion walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slag outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclones are a challenging refractory application mainly because of abrasion and sometimes also alkali attack. Aside from the materials used, engineering and installation are key elements for good performance.
Despite the trend towards full membrane wall systems to extract more heat and thereby increase overall efficiency, traditional uncooled furnace shells are still widely used.

These are conditions where thick linings are needed; they normally feature multiple layers, dedicated anchoring, thermal insulation together with the typical properties to withstand the aggressive furnace atmosphere of boilers and incinerators.

1. **Furnace chamber of pulverized coal fired boilers**

 This type of furnace for coal burning dominates the electric power industry. Major coal fired plants have increasing size and their pressurized circuits are operated at increasing temperature and pressure.

 Limited areas are protected by refractory linings. In any case their reliability is highly important as it may affect operations. The most demanding zones are the slag outlet and the burners where high thermal shock resistance is required.

<table>
<thead>
<tr>
<th>Seven products</th>
<th>Application areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven Plast 70 AKX</td>
<td>burner throat, uncooled parts</td>
</tr>
<tr>
<td>Seven Plast 70 CH CD</td>
<td>burner throat, uncooled parts</td>
</tr>
<tr>
<td>Seven Cast 38 RM 4</td>
<td>uncooled parts, low thermal stress</td>
</tr>
<tr>
<td>Seven Cast 75 RX 4</td>
<td>uncooled parts with thermal stress</td>
</tr>
<tr>
<td>Seven Patch 75/85 C SiC</td>
<td>cooled parts, thin linings over tubes</td>
</tr>
<tr>
<td>Seven Cast 57 N SiC 5</td>
<td>slag outlet area</td>
</tr>
</tbody>
</table>
2. Stoker type and grate combustion chambers

Stoker and grate furnaces are typically used to produce energy from waste under strictly controlled conditions.

These incinerators are widely operated, especially for high capacities, and the optimal construction of the lining is a cornerstone to ensure optimal working conditions.

Several configurations are available according to the design of the different engineering companies.

High SiC content and low porosity materials are normally recommended by the engineering companies especially to reduce the sticking in the grate transition or on the walls and also to ensure heat extraction. Other possible issues in the lower part of the combustion chamber are abrasive wear and water steam while alkali attack may appear in the linings above.

Partial re-lining of a grate combustion chamber.

Notice: smaller and newer units especially for biomass applications are mostly built by cooled parts where thin linings are applied to ensure protection of pipes against chemical attack, slag and abrasion, but also to ensure the required thermal flow.

Color Zones

- **Burner throats**
- **Combustion chamber walls**
- **Fuel chute**
- **Preheating chamber**
- **Grate transition**
- **Combustion chamber roof, neck**
- **Upper walls**
- **Backup insulation, 2nd layer**
- **Backup insulation, 3rd layer**

Material type

- Plastic or LC castable
- LC castable with or without SiC or SK 34 bricks
- LC castable
- LC castable with SiC
- LC castable with high SiC
- LC castable or gunning with or without SiC
- LC castable or gunning with or without SiC
- Insulating castable, density 0.7 - 0.8
- Thermo insulating board

Attention to

- high temperature, thermal shock, alkali attack, thermal shock
- abrasion
- thermal shock, sticking
- slag sticking, abrasion, thermal flow
- alkali attack
- alkali attack
- insulation
- insulation

Seven products:

- **Application areas**

 - Seven Cast 80 NX: fuel chute, grate transition zone exit side
 - Seven Cast 50/55 NM: fuel chute, side wall, upper walls, sometimes preheating zone
 - Seven Gun 50 RM 5: upper walls
 - Seven Flow 35 N SiC M -3: upper walls, side walls
 - Seven Cast 65 N SiC -3: grate transition zone
 - Seven Brick 90 K SiC: grate transition zone
 - Seven Cast 30 N SiC B: preheating zone wall
 - Seven Cast 30 N SiC D: preheating zone wall
 - Seven Plast 70 CH CO: burner throat
 - Seven Cast 70 NH: burner throat
 - Seven Cast 65 ND/ NX: roof and neck
 - Seven Flow 50 ND 51 Z: roof and neck
 - Seven Cast 50 ND 15 Y: roof and neck
 - Seven Gun 57 RH 01 V CO: roof, neck and side walls
3. **Cyclones, loop seal and return leg with thick linings**

The older generation of separators in CFB are uncooled and lined with thick linings either by bricks or monolithic refractories. Even though membrane walls become more and more popular, several traditional cyclones are still built and regularly operated nowadays.

In loop seal and return leg temperatures are lower than in combustion chambers and separators, but due to concentration of sand and ashes abrasion and alkali are still an issue.

<table>
<thead>
<tr>
<th>Color</th>
<th>Zones</th>
<th>Material type</th>
<th>Attention to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abrasion roofs</td>
<td>LC castable or gunning</td>
<td>high abrasion, alkali</td>
</tr>
<tr>
<td>2</td>
<td>Inlet walls</td>
<td>LC castable or plastic</td>
<td>high abrasion, alkali</td>
</tr>
<tr>
<td>3</td>
<td>Target zone</td>
<td>LC castable, plastic or dense bricks</td>
<td>extreme abrasion, alkali</td>
</tr>
<tr>
<td>4</td>
<td>Cone</td>
<td>RC or MC castable</td>
<td>abrasion, alkali</td>
</tr>
<tr>
<td>5</td>
<td>Loop seal</td>
<td>RC or MC castable</td>
<td>abrasion, alkali</td>
</tr>
<tr>
<td>6</td>
<td>Return leg</td>
<td>RC castable or gunning</td>
<td>abrasion, alkali</td>
</tr>
<tr>
<td>7</td>
<td>Outlet duct</td>
<td>Castable density 0.7 - 0.8 insul</td>
<td>some alkali</td>
</tr>
<tr>
<td>8</td>
<td>Backup insulation, 2nd layer</td>
<td>Thermo insulating board</td>
<td>insulation</td>
</tr>
<tr>
<td>9</td>
<td>Backup insulation, 3rd layer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seven products

<table>
<thead>
<tr>
<th>Application areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven Cast 80 NX</td>
</tr>
<tr>
<td>Seven Cast 52 RM</td>
</tr>
<tr>
<td>Seven Cast 50 NM</td>
</tr>
<tr>
<td>Seven Cast 58 NM</td>
</tr>
<tr>
<td>Seven Cast 43 RM 5 -10</td>
</tr>
<tr>
<td>Seven Gun 85 NX, Seven Gun 55 RM,</td>
</tr>
<tr>
<td>Seven Gun 57 RM 01 V CD</td>
</tr>
<tr>
<td>Seven Gun 47 RM 5</td>
</tr>
<tr>
<td>Seven Trow 85 CX -3</td>
</tr>
<tr>
<td>Seven Plast 70 CH CO</td>
</tr>
</tbody>
</table>

Inlet walls, target zone, loop seal |
inlet floor, cone, loop seal, outlet duct |
inlet floor, cone, loop seal, return leg |
roof, cyclone inlet, cyclone drum |
outlet duct |
roofs, inlet walls, cyclone drum, cyclone exit |
roofs, outlet duct |
target zone, high abrasion |
cyclone drum, inlet, exit, loop seal |
4. Kilns of rotary type incinerators

This type of incinerator is widely used to burn industrial wastes such as dirty soils, hazardous materials and pharmaceutical wastes. The choice of linings depends on the type of waste and their behavior during incineration.

<table>
<thead>
<tr>
<th>Color</th>
<th>Zones</th>
<th>Material type</th>
<th>Attention to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combustion rotary chamber</td>
<td>LC or UC castable</td>
<td>chemical corrosion</td>
</tr>
<tr>
<td>2</td>
<td>Ash hopper</td>
<td>RC castable</td>
<td>thermal shock</td>
</tr>
<tr>
<td>3</td>
<td>Outgas duct</td>
<td>Insulating castable</td>
<td>abrasion</td>
</tr>
<tr>
<td>4</td>
<td>Insulation</td>
<td>Insulating castable or gunning mix</td>
<td>strength</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seven products</th>
<th>Application areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven Cast 88 NR 03 W</td>
<td>rotary kiln, waste gas duct</td>
</tr>
<tr>
<td>Seven Cast 50 ND 15 Y</td>
<td>rotary kiln</td>
</tr>
<tr>
<td>Seven Cast 75 NR 04 Y</td>
<td>rotary kiln</td>
</tr>
<tr>
<td>Seven Shot 50 ND 15 Y</td>
<td>rotary kiln, waste duct</td>
</tr>
<tr>
<td>Seven Shot 51 NH 01 X</td>
<td>rotary kiln, waste duct</td>
</tr>
<tr>
<td>Seven Cast 50 NM</td>
<td>slag hopper</td>
</tr>
</tbody>
</table>
5. Combustion chambers of flue gas incinerators

Gaseous subproducts of industrial processes must be properly burnt and treated to avoid dangerous emissions. The additional controlled and monitored incineration of flue gas is therefore a common practice for environmental reasons. Dangerous chemicals can be transformed to harmless oxides in this kind of equipment, and the concentrations of dioxins and NOx are reduced to safe levels.

This type of incinerator can have different configurations, their combustion chambers are normally static drums, which do not rotate. In the graphs, a horizontal and a vertical configuration are depicted.

The choice of linings depends mainly on the type of chemical contained in the flue gases.

<table>
<thead>
<tr>
<th>Color</th>
<th>Zones</th>
<th>Material type</th>
<th>Attention to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burner throat</td>
<td>Plastic or LC castable</td>
<td>thermal shock</td>
</tr>
<tr>
<td></td>
<td>Combustion chamber</td>
<td>LC castable, gunning mix, plastic</td>
<td>abrasion, chemical corrosion</td>
</tr>
<tr>
<td></td>
<td>Roof before baffle</td>
<td>Gunning mix or plastic RC or LC castable</td>
<td>abrasion, chemical corrosion</td>
</tr>
<tr>
<td></td>
<td>Post combustion chamber after baffle</td>
<td>Gunning mix or plastic Insulating castable</td>
<td>abrasion, chemical corrosion</td>
</tr>
<tr>
<td></td>
<td>Roof after baffle</td>
<td>Insulating castable or gunning mix</td>
<td>abrasion, chemical corrosion</td>
</tr>
<tr>
<td></td>
<td>Outgas duct</td>
<td>Insulating board</td>
<td>abrasion, chemical corrosion</td>
</tr>
<tr>
<td></td>
<td>Insulation (2nd layer)</td>
<td></td>
<td>insulation</td>
</tr>
<tr>
<td></td>
<td>Insulation (3rd layer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baffle wall</td>
<td></td>
<td>thermal shock</td>
</tr>
</tbody>
</table>

Seven products

<table>
<thead>
<tr>
<th>Seven products</th>
<th>Application areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven Plast 70 AKX</td>
<td>burner throat, combustion chamber, roof</td>
</tr>
<tr>
<td>Seven Cast 65 NX</td>
<td>combustion chamber, baffle wall</td>
</tr>
<tr>
<td>Seven Cast 70 NH</td>
<td>baffle wall, burner throat</td>
</tr>
<tr>
<td>Seven Cast 52 RM</td>
<td>combustion chamber after baffle</td>
</tr>
<tr>
<td>Seven Gun 60 ND</td>
<td>roof before baffle</td>
</tr>
<tr>
<td>Seven Gun 47 RM 5,</td>
<td>roof after baffle</td>
</tr>
<tr>
<td>Seven Gun 55 RM</td>
<td></td>
</tr>
<tr>
<td>Sevenlite 1300, 1100 LD</td>
<td></td>
</tr>
</tbody>
</table>

Aggressive applications for fluoride and/or chloride wastes:

- Seven Cast 98 Ur
- Seven Plast 90 AKR
- Seven Brick 99 KR (99% alumina)
- Seven Cast 95 RBB LW
Seven Refractories has incorporated environmental concerns about climate change in its innovative approach to the market; not only in making our factory more electrically independent by using renewable energy sources, but in the entire manufacturing process cycle and quality control.

Respect of the environment is a core value of Seven Refractories.

Selection of the raw materials, dedicated and oriented research, composition architecture and on the field technical experts are the key-points for outstanding efficiency and reliability of the refractory linings, excellent control of the thermal load distribution and low product variability in time.
SERVICES PROVIDED

- Preliminary study and investigation for the entire project
- Design and architecture including bill of materials and thermal calculation
- Full range of products for lining and maintenance
 - Regular, low, ultra-low and no-cement castable
 - Regular and dense low-cement gunning mix
 - Ramming
 - Shotcreting
 - Self-flowing
- Supply of mixers, gunning machines, pumps, etc.
- Training on mixing, gunning and maintenance techniques
- Training on equipment usage
- Supervision and monitoring by experienced technicians
- Global research & development
- Technical advice by experts
- Monitoring and targeting of results

info@sevenrefractories.com • www.sevenrefractories.com